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Einleitung

Sie sind so schön, diese Gleichungen. Sogar optisch schön, aber

besonders schön im geistigen Sinne. Ihre Präzision und ihre Kraft

sind schön, und wenn er beginnt, eine Gleichung zu verstehen,

bekommt er dasselbe Gefühl, wie wenn er den Mond über den

Bäumen aufgehen sieht. In seiner Seele ist es dunkel und still, und

dann beginnen die Baumwipfel auf der gegenüberliegenden Seite

der Bucht ein wenig zu glühen, weiÿ und sanft, und das Weiÿ wird

heller, läÿt die Umrisse der Bäume hervortreten, und schlieÿlich

wird ein kleines Stück des Mondes sichtbar, und die Mathematik

tut sich auf, umfaÿt das alles und scheint in Vollendung.

(Alan Lightman - Der gute Benito)

In dieser Arbeit geht es um Einbettungen von projektiven Varietäten in projektive Räu-
me. Morphismen in den projektiven Raum sind bestimmt durch ein Linienbündel und eine
Menge von globalen Schnitten. Jede dieser Einbettungen liefert umgekehrt auch ein Li-
nienbündel und eine Menge von globalen Schnitten. Es besteht ein enger Zusammenhang
zwischen Bündeln zusammen mit globalen Schnitten einerseits und den Einbettungen an-
dererseits. So ist die Einbettung genau dann projektiv normal, das heiÿt der homogene
Koordinatenring von dem Bild der Varietät ganz abgeschlossen, wenn das Linienbündel
normal erzeugt ist, also die natürlichen Abbildungen Sn(H0(L)) → H0(Ln) surjektiv
sind. Im Lichte einer bestimmten freien Au�ösung des Ringes ⊕nH0(Ln) betrachtet, er-
kennt man im ersten Term dieser Au�ösung die Bedingung, dass das Linienbündel normal
erzeugt ist. Hieraus ergibt sich natürlich die Frage, wann die nächsten Terme so einfach
wie möglich sind. Das führt zur De�nition der Eigenschaft Np. Für p = 0 ist das genau
die Eigenschaft �normal erzeugt�. Für p = 1 bedeutet Np, dass das Ideal, das zu der
Varietät gehört, quadratisch erzeugt ist.
Im Falle einer K3 Fläche gibt es hierzu Ergebnisse von Saint-Donat aus dem Jahre 1974:
In seiner berühmten Arbeit [SD74] zeigt er unter anderem, dass für jedes ample Linien-
bündel L auf einer K3-Fläche, L2 normal erzeugt ist (siehe Theorem 6.1 (ii) in seiner
Arbeit). Darüberhinaus zeigt er, dass das L2 die Eigenschaft N1 erfüllt, also das Ideal
quadratisch erzeugt ist (siehe im wesentlichen Theorem 7.2).
In einer anderen Herangehensweise als der von Saint-Donat nutzt man den Kern der Aus-
wertungsabbildung ML. Auf diese Weise lässt sich zeigen, dass die Kohomologiegruppen
H1(M⊗p+1

L ⊗Ls) für alle s ≥ p+1 genau dann verschwinden, wenn L die Eigenschaft Np

hat (siehe 3.4). Dies benutzten Gallego und Purnapranja, um die Eigenschaft Np für die
Potenzen eines Linienbündels L auf einer K3 Fläche mit (L.L) ≥ 4 zu untersuchen. Wir
werden diese Ergebnisse im Abschnitt �Results for K3 surfaces� vorstellen. Dabei wird
die Eigenschaft, dass ML semistabil ist, eine zentrale Rolle spielen.
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In dieser Arbeit untersuchen wir Linienbündel auf verschiedenen geometrischen Objek-
ten: Wenn S eine K3 Fläche ist und L ein Linienbündel auf ihr, betrachten wir zunächst
das Bündel L�L auf dem Produkt S × S. Wir zeigen, dass das Quadrat dieses Bündels
normal erzeugt ist und die p+ 1-te Potenz Eigenschaft Np hat. Danach untersuchen wir
das Verhalten unter Aufblasungen. Wenn ein Bündel Eigenschaft Np hat, so hat auch
das auf die Aufblasung zurückgezogene Bündel diese Eigenschaft. Als Letztes gehen wir
auf das symmetrische Produkt bzw. auf das Hilbert Schema ein und zeigen dort, dass ein
normal erzeugtes Bündel beim Abstieg auch normal erzeugt bleibt.
Die Arbeit ist wie folgt aufgebaut: Nach der Einleitung im ersten Kapitel führen wir im
zweiten Kapitel die für die Arbeit nötigen Bezeichnungen ein. Anschlieÿend widmen wir
uns dem Hilbert Schema: Wir motivieren die Konstruktion und de�nieren es. Die grund-
legenden Eigenschaften dieses Schemas werden erklärt. Dem Kern der Auswertungsab-
bildung ist das dritte Kapitel gewidmet. Dabei wird auch Eigenschaft Np eingeführt.
Danach werden die Ergebnisse von Gallego und Purnapranja vorgestellt und bewiesen.
Die Idee dahinter ist, die Aussagen auf eine Kurve zurückzuführen, auf der man mittels
Stabilitätsaussagen die Kohomologiegruppen kontrolliert. Wir berechnen die höheren Ko-
homologiegruppen und beweisen zwei für die das vierte Kapitel relevante Lemmata. Im
Abschnitt �Properties ofMG� entwickeln wir Formeln, die das Verhalten vonML beschrei-
ben: Wir drücken ML�L in Termen von ML aus und zeigen, dass das Zurückziehen auf
eine Aufblasung mit M(−) vertauscht. Im vierten Kapitel nutzen wir das Kriterium von
verschwindenden Kohomologien, um Eigenschaft Np bzw. das Normal-Erzeugt-Sein zu
zeigen. Die Abschnitte sind ähnlich aufgebaut: Unter bestimmten Umständen verschwin-
det die Gruppe H1(MLr ⊗Ls) für bestimmte r und s, womit Lr normal erzeugt bzw. die
Eigenschaft Np erfüllt. Die Idee dahinter ist, die Kohomologiegruppe H1(MLr ⊗Ls) mit
Hilfe der Aussagen aus dem dritten Kapitel auf etwas Bekanntes zurückzuführen und so
zum Verschwinden zu bringen. Daraus folgen direkt die gewünschten Eigenschaften des
Linienbündels.
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Chapter 1

Introduction

Rien n'est beau que le vrai.

(Hermann Minkowski)

This thesis deals with embeddings of projective varieties into projective spaces. Mor-
phisms into projective space are determined by a line bundle and a set of global sections.
Conversely, every such embedding gives us a line bundle and a set of global sections.
There is a close relationship between this line bundle and the set of sections on the
one hand and the embedding on the other. For example: The embedding is projec-
tively normal, i.e. the homogeneous coordinate ring of the variety's image is integrally
closed if and only if the line bundle is normally generated, i.e. the canonical mappings
Sn(H0(L)) → H0(Ln) are onto. One can view this condition on a line bundle being
normally generated in the light of a certain free resolution of ⊕nH0(Ln). From the �rst
term of the resolution, we can deduce the condition that L has to be normally generated.
To us, it seems to be an obvious question, under which circumstances the next terms are
as simple as possible. This leads us to the de�nition of Np. For p = 0 this is the property
of being �normally generated�. For p = 1 this means that the varieties ideal is quadratic,
i.e. generated by quadratic polynomials.
In the case of a K3 surface there are results by Saint-Donat: In his well known arti-
cle [SD74] he proved the following: If L is an ample line bundle on a K3 surface, L2 is
normally generated (Theorem 6.1 (ii) in his article). Furthermore, he shows that in this
case, the ideal has to be quadratic (check Theorem 7.2 of Saint-Donat), i.e. L2 satis�es
the property N1.
An approach di�erent from Saint-Donat's is using the kernel ML of the evaluation map.
One can show that the cohomology group H1(M⊗p+1

L ⊗ Ls) vanishes for all s ≥ p + 1
if and only if L satis�es Np (check 3.4). Gallego and Purnaprajna used this to prove
the property Np for Lr, given that L is a line bundle with (L.L) ≥ 4 on a K3 surface.
We will present these results in section �Results for K3 surfaces�. The fact that ML is
semistable will be a central tool for this.
We consider line bundles on di�erent geometrical objects: If S is a K3 surface and L a
line bundle on S, we look at the bundle L� L on the product S × S. We show that the
square of this bundle is normally generated and the (p+1)-th power has the property Np.
Consequently, we focus on the behavior under blowup. If a bundle has the property Np,
then so does the pullback to the blowup. Eventually, we consider the symmetric product
and the Hilbert scheme, and show that a normally generated bundle remains normally
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Chapter 1 Introduction

generated under descent.
This thesis is structured as follows:
In chapter two we will introduce the required notation. Then, we present the Hilbert
scheme, motivating the construction and giving the de�nition. We illustrate the basic
properties of this scheme.
The kernel of the evaluation map is the topic of the third chapter. Alongside, we in-
troduce the property Np. The results of Gallego and Purnaprajna will be stated and
proved. The basic idea behind this is to reduce the statement to a curve and handle the
cohomology groups with stability theorems. We calculate higher cohomology groups and
prove two technical lemmas for chapter three. We develop formulas that characterize
the behavior of ML in section �Properties of MG�: Expressing ML�L in terms of ML, we
show that the pullback under blowups commutes with M(−).
In chapter four, we use the vanishing cohomology criterion to verify property Np and
the normal generation. The sections are structured in a similar fashion: The group
H1(MLr ⊗ Ls) vanishes under certain circumstances for certain r and s � thereby, Lr

is normally generated, respectively satis�es Np. The basic idea behind this is to reduce
the cohomology group H1(MLr ⊗ Ls) to something well-known that vanishes � this is
achieved using the statements of chapter three. The desired properties of the line bundle
follow from this.

Acknowledgment

In the German acknowledgment one important person is missing. I would like to give a
special thank to Jesko Hüttenhein for proofreading my thesis and thereby, teaching me
some English.
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Chapter 2

General notations and the Hilbert Scheme

Some general remarks and notations

Throughout this paper, we will work over the complex numbers C.
Given the product of two varieties, we denote the projection to the �rst and the second
component by π1 and π2. The line bundle π∗1L ⊗ π∗2L

′ for L and L′ line bundles on
the �rst and second variety, respectively, will sometimes be written as L� L′. The self-
intersection number of L is denoted by (L.L) and its tensor powers with L ⊗ · · · ⊗ L
(r-times) by Lr .
The n-th symmetric power of a projective variety X is written as Sn(X) and obtained
in the following way: Let Sn be the symmetric group on n letters. It operates on Xn

by permuting the components. The quotient Sn(X) := Xn/Sn exists as a projective
variety, since Sn is a �nite group and we can apply [BF05, Theorem 7.1.2].
In the course of this thesis we will need the sum and the intersection of subsheaves of a
sheaf of modules. If L is a product, we will be able to express the bundle ML in terms
of the MLi where the Li are the �components� of L (see Theorem 3.20).

De�nition. Let (X,OX) be a ringed space, F an OX -module and G , G ′ two OX -
submodules of F . Then we de�ne the OX -modules:

(i) G + G ′: (G + G ′)(U) = G (U) + G ′(U) for all open U ⊂ X.

(ii) G ∩ G ′: (G ∩ G ′)(U) = G (U) ∩ G ′(U) for all open U ⊂ X.

The presheaves G +G ′ and G ∩G ′ actually are sheaves, since G (U) and G ′(U) are F (U)-
submodules for all U .
As in the local case, we get an exact sequence of OX -modules:

0 −→ G ∩ G ′ −→ G ⊕ G ′ −→ G + G ′ −→ 0.

The exactness of this sequence can be checked on the stalks. The induced long exact
sequence helps us to show that the cohomology groups of the sum vanish. If H i(G ),
H i(G ′) and H i+1(G ∩ G ′) vanish, then H i(G + G ′) vanishes as well:

· · · −→ H i(G ⊕ G ′) = H i(G )⊕H i(G ′) −→ H i(G + G ′) −→ H i+1(G ∩ G ′) −→ · · · .
(2.1)
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Chapter 2 General notations and the Hilbert Scheme

Of course we can look at more than two summands. Then, we inductively obtain the
following

2.2 Lemma. Let (X,OX) be a ringed space, F an OX-module and G1, . . . ,Gn OX-
submodules of F . If for all non-empty subsets Λ ⊆ {1, . . . , n} the cohomology group

H i−1+|Λ|(
⋂
l∈Λ Gl) vanishes, then H i(

∑n
j=1 Gj) vanishes as well. Here |Λ| denotes the

cardinality of Λ.

Proof. We prove this lemma by induction on n. It is trivial for a single summand: The
desired vanishing is the same as in the assumption.
Hence, assume the vanishing for n summands. We want to show 0 = H i(

∑n+1
j=1 Gj) =

H i(
∑n

j=1 Gj + Gn+1). By the sequence (2.1), we want three groups to vanish:

(i) H i(Gn+1) = 0:
Vanishes by the assumption; take Λ = {n+ 1}.

(ii) H i(
∑n

j=1 Gj) = 0:

Since for all Λ ⊆ {1, . . . , n} ⊆ {1, . . . , n, n + 1} we have H i−1+|Λ|(
⋂
j∈Λ Gj) = 0.

The induction gives us H i(
∑n

j=1 Gj) = 0.

(iii) H i+1(
∑n

j=1(Gj ∩ Gn+1)) = 0:
Again we want to use the induction hypothesis. We have to check that, for all
Λ ⊂ {1, . . . , n}, we have H i+|Λ|(

⋂
j∈Λ Gj ∩ Gn+1) = 0.

De�ne ∆ := Λ ∪ {n+ 1}. Thus H i+|Λ|(
⋂
j∈Λ Gj ∩ Gn+1) = H i−1+|∆|(

⋂
j∈∆ Gj) = 0

by induction.

q.e.d.

Using the notion of the sum of subsheaves, we can describe the kernel of a morphism
given as a tensor product of morphisms.
Let f : F → G and g : F ′ → G ′ be two morphisms of locally free OX -modules. Then,
the map f ⊗ g : F ⊗F ′ → G ⊗ G ′ has kernel

ker(f ⊗ g) = ker(f)⊗F ′ + F ⊗ ker(g). (2.3)

The equation can be checked on the stalks: For all x ∈ X Fx,F ′x,Gx and G ′x are free
OX,x-modules. In this case, (2.3) can be deduced by basic calculation.
It will be useful to know the (higher) direct images of the structure sheaf under blowup,
because later on we will construct the Hilbert scheme as a blowup.

2.4 Theorem. Let X be a smooth variety and ϕ : X̃ → X be the blowup along some

subvariety. Then:

ϕ∗OX̃ = OX and Riϕ∗OX̃ = 0.

Proof. The map ϕ is a surjective, proper and birational morphism of smooth varieties.
Thus we can apply [Vie77, Lemma 1]. q.e.d.
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The Hilbert scheme

In the focus of our interests lay the symmetric power and the Hilbert scheme of points
on a K3 surface. The symmetric power had an intuitive de�nition. In contrast, the
Hilbert scheme requires a more abstract approach. One can think of the Hilbert scheme
as the parameter space for subschemes of a given scheme. This scheme is the disjoint
union of several projective schemes, each of them corresponding to a Hilbert polynomial.
In other words, it parametrizes all subschemes with a given Hilbert Polynomial. This
scheme, �rst de�ned by Grothendieck in [Gro61], is a fundamental object in algebraic
geometry: Together with the Quot Scheme, it plays a central role in the construction of
moduli spaces. For example the moduli space of polarized K3 surfaces1 is constructed as
a quotient of a subscheme of the Hilbert scheme.
The Hilbert scheme (of the projective space) itself was constructed by Grothendieck as
a vanishing set of certain determinants in the Grassmannian.
In this thesis we do not want to use the Hilbert scheme to perform any constructions, we
are rather interested in the scheme itself. In particular, we lay our focus on the constant
Hilbert Polynomial n, for n a natural number. This can be seen as the parameter space
for n points in a variety. Later on we will additionally assume that n = 2 and the points
lay on a K3 surface. For the de�nition and the description of the properties we mainly
take the notes of Lehn [Leh].

De�nition. Let X be a smooth, quasi-projective scheme. We de�ne the Hilbert scheme

of n points on X as

Hilbn(X) = X [n] = {Z ⊂ X| dim(Z) = 0, dim(H0(OZ)) = n}.

Equivalently, one can say that the functor

Hilbn(X) :
(
Schemes

)op −→ (
Sets

)
Hilbn(X)(S) = {Z ⊆ S ×X|Z is proper and �at over S, P (Zs) = n ∀s ∈ S}

is represented by a scheme Hilbn(X). The Hilbert polynomial of Zs is denoted with
P (Zs).

It seems a natural question to ask how the geometry of Hilbn(X) is related to the geom-
etry of X. If X is a surface, the Hilbert scheme behaves well. Therefore, we restrict to
the case of a surface from now on.

2.5 Lemma. If S is a smooth, connected, quasi-projective surface, then Hilbn(S) is

smooth and connected of dimension 2n for all n ∈ N.

This lemma (and the following ones) are proved for example in [Leh], [BF05] or [Fog68].
The intuitive conception of the Hilbert scheme as a parameter space of n points suggests

1K3 surfaces with an ample, indivisible line bundle.
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Chapter 2 General notations and the Hilbert Scheme

a connection to the symmetric product. This connection is provided by the so called
Hilbert-Chow morphism. Although it is de�ned only set-theoretical, one can show that
it actually is a morphism.

ρ : Hilbn(S)→ Sn(S)

[Z] 7→
∑
x∈S

l(OZ,x)x

Here l(OZ,x) denotes the length of OZ,x.
For a smooth curve, this morphism actually is an isomorphism. For an arbitrary S, it
is still an isomorphism over the open subset of Sn(S) corresponding to the n-tuples of
distinct points.
Working with the symmetric product has the disadvantage that one has to deal with
singular varieties. Using the Hilbert scheme these di�culties can be avoided.

2.6 Lemma. If S is a smooth surface, then for all n ≥ 0 the Hilbert scheme Hilbn(S) is
smooth. In particular, the Hilbert-Chow morphism ρ : Hilbn(S)→ Sn(S) is a resolution

of the singularities of the symmetric product.

Emphasizing the special case n = 2, we know that S2(S) is singular exactly along the
diagonal ∆ and therefore, the lemma yields that Hilb2(S) is the blowup of S2(S) along
the image of the diagonal and the blowup morphism is the Hilbert-Chow morphism.
We also can go the other way: First we blow up S × S along the diagonal and then
divide out by the induced operation of S2. The result is again the Hilbert scheme. The
involved maps (blowups and projections) commute.
Altogether, we can express it by the following commutative diagram:

S̃ × S
ϕ //

p̃

��

S × S

p

��

∆

p|∆
��

? _oo

Hilb2(S)
ϕ̄

// S2(S) p(∆)? _oo

(2.7)

The map ϕ (resp. ϕ̄) is the blowup map and p (resp. p̃) the projection.
The maps p and p̃ are branched double covers, so the direct images of the structure
sheaves in the top row can be written as:

p∗OS2 = OS2(S) ⊕ I Rip∗OS2 = 0 ∀i ≥ 1. (2.8)

p̃∗OS̃×S = OHilb2(S) ⊕ Ĩ Rip̃∗OS̃×S = 0 ∀i ≥ 1. (2.9)

for some line bundle I on S2(S) and Ĩ on the Hilbert scheme.
Now we want to relate the cohomology (of the structure sheaves) for Sn(S) and Hilbn(S)
to the cohomology of S. The Künneth formula H∗(Sn,OSn) ' H∗(S,OS)⊗n induces an
isomorphism

H∗(Sn(S),OSn(S)) ' Sn(H∗(S,OS)).

6



Since the Hilbert-Chow morphism is a resolution of the singularities of Sn(S) (see Lemma
2.6), its higher direct images vanish, Riρ∗OHilbn(S) = 0 for all i > 0. Now the Leray
spectral sequence yields H∗(Hilbn(S),OHilbn(S)) = H∗(Sn(S),OSn(S)).
Putting these two isomorphisms together, we get

H∗(Hilbn(S),OHilbn(S)) = SnH∗(S,OS).

With these formulas, the cohomology can be calculated if H∗(S) is known.
As an example, we know the cohomology of a K3 surface. This is the case we are
interested in. Here we have:
H0(S,OS) = H2(S,OS) = C and H i(S,OS) = 0 for all i 6= 0, 2.
Hence, we get:

H i(Sn(S),OSn(S)) = H i(Hilbn(S),OHilbn(S)) =

{
C for i ≡ 0 (mod 2) and i ≤ 2n

0 else.

(2.10)

In this thesis we want to analyze special line bundles on such a Hilbert scheme, namely
those that come from S.
Let L be a line bundle on S and J = L � L on S × S. Then we can take the inverse
image under the blowup (along ∆) of the bundle J . The symmetric group operates
on this bundle by permuting the components, implying descent to the Hilbert scheme.
The bundles J on the Hilbert scheme which we will study satisfy the property p̃∗J =
ϕ∗(π∗1L⊗ π∗2L) for a line bundle L on S and S a K3 surface, of course.

7





Chapter 3

The kernel of the evaluation map

Our goal is to show that certain line bundles (or their tensor powers) on the varieties
described in the previous chapter are normally generated. In order to do so, we use a
cohomological criterion, which involves the kernel of the evaluation map (cf. Theorems
3.2 and 3.4). In this chapter we de�ne this kernel and explain its relation to the normal
generation. By viewing the normal generation in the light of a resolution of a certain ring,
it seems natural to generalize this property by putting more conditions on the resolution.
The resulting property will be called �Property Np�. In particular, we will discuss its
relation to cohomology.
With the help of these criterions Gallego and Purnaprajna have shown some strong
vanishing theorems for line bundles on K3 surfaces in [GP00]. For example, these imply
the normal generation of the second tensor power under the assumption that the self-
intersection number is larger or equal to four. We will state and prove these theorems.
For later use, we generalize them to higher cohomology groups. Since we explicitly want
to see the normal generation, we develop some techniques to help us with the calculations
of the required cohomology groups: Behavior under tensor products and blowups.

De�nition of MG

De�nition. Let X be a projective variety and G a globally generated line bundle on X.
Then, there is a natural surjective evaluation map of vector bundles:

evG : H0(G)⊗OX → G.

We de�ne the kernel of this map asMG. It actually is a vector bundle, since G is globally
generated. By construction, one has the following exact sequence:

0 −→MG −→ H0(G)⊗OX
evG−→ G −→ 0. (3.1)

This vector bundle controls the normal generation of a globally generated line bundle,
so we recall the

De�nition. Let L be a globally generated line bundle on a projective variety X. We
say that L is normally generated if the natural maps SnH0(X,L) → H0(X,Ln) are
surjective for all n ≥ 1.

9



Chapter 3 The kernel of the evaluation map

Since the line bundle L is assumed to be globally generated, we get a morphism ϕL : X →
P(H0(L)∗). This is equivalent to the question of whether X is projectively normal with
respect to this morphism. By de�nition, this is the case if and only if its homogeneous
coordinate ring is an integrally closed domain. The following theorem describes how the
bundle MG is related to the normal generation.

3.2 Theorem. Let L be a globally generated line bundle on a projective variety X. If

the cohomology group H1(ML⊗Ls) vanishes for all s ≥ 1, then L is normally generated.

If, in addition, H1(Lk) = 0 for all k ≥ 1, the converse is also true.

Proof. This proof is very similar to the proof of [GP96, Lemma 1.4], but we cannot use
this lemma since H2(OX) does not vanish in our case.
If we want to show that L is normally generated, we have to verify that the maps
SnH0(L) → H0(Ln) are surjective for all n ≥ 1. For any n, this map �ts into a
commutative diagram (cf. cit. loc.):

H0(L)⊗n //

γ1

��

SnH0(L)

��

H0(L2)⊗H0(L)⊗n−2

γ2

��
...

γn−2

��
H0(Ln−1)⊗H0(L)

γn−1 // H0(Ln)

Now we want the multiplication maps γj : H0(Lj)⊗H0(L)→ H0(Lj+1) to be surjective
for all j = 1, . . . , n− 1. These maps can be obtained from the sequence (3.1) for G = L,
tensored with Lj :

· · · −→ H0(Lj)⊗H0(L)
γj−→ H0(Lj+1) −→ H1(ML ⊗ Lj) −→ H0(L)⊗H1(Lj) −→ · · ·

H1(ML ⊗ Lj) vanishes, therefore γj is surjective.
For the converse, we additionally assume that H1(Lk) vanishes for all k. The vanishing
of H1(ML ⊗ Lj) implies the surjectivity of γi for all i. With the above diagram, this
implies the normal generation. q.e.d.

As mentioned before, L determines a morphism ϕL : X → P(H0(L)∗). Let S :=
S∗(H0(L)) ' S∗(H0(L)∗) be the homogeneous coordinate ring of this projective space.
We consider the graded ring R :=

⊕
mH

0(Lm), which is a �nitely generated S-module
in the natural way. Therefore, it has a minimal graded free resolution:

0 −→ Er−1 −→ Er−2 −→ · · · −→ E1 −→ E0 −→ R,−→ 0 (3.3)

10



where r = dimH0(L)− 1 and each Ei is a direct sum of twists of S: Ei = ⊕jS(−ai,j).
If we now assume L to be normally generated we get E0 = S. Thus, being normally
generated implies that the �rst term of the resolution is very simple. Consequently, if
the �rst p terms of this resolution are �simple� in a certain sense, we wonder about the
implications. Speci�cally, one makes the following

De�nition. With the above notations we �x an integer p ≥ 0. We say that the line
bundle L on X satis�es property Np if and only if the following hold:

• E0(L) = S,

• Ei(L) = ⊕S(−i− 1) ∀1 ≤ i ≤ p.

Example. If we assume a line bundle to have property N0, this means that we only
have to satisfy the �rst part of the de�nition. However, this is the notion of a normally
generated line bundle, as we de�ned it before.
If a line bundle is normally generated, the above resolution determines a resolution of
the homogeneous ideal of X. Thus, N1 is satis�ed if and only if this ideal is generated
by quadrics.

As we have seen before in Theorem 3.2, property N0 can be checked in cohomology. In
the end, we would like to come to a similar criterion for property Np. We now give a
sketch of how this property can be related to the vanishing of certain cohomology groups.
If, for example, property N1 holds, i.e. the corresponding homogeneous ideal is generated
by quadrics, one looks at the group Tor1(R,C). Here, C denotes the residue �eld of S
at the irrelevant maximal ideal. On the one hand, this Tor group can be computed from
the sequence (3.3) since it is a graded S-module. Hence, the dimension of its component
in degree k is the number of minimal generators of the homogeneous ideal of degree k.
We obtain that N1 holds if and only if Tor1(R,C) is concentrated in the components of
degree zero, one and two.
On the other hand we can compute this Tor group using the Koszul resolution of C:

0→ S(−r − 1)⊗
∧r+1

H0(L)→ · · ·

· · · → S(−2)⊗
∧2

H0(L)→ S(−1)⊗H0(L)→ S → C→ 0.

Tensoring with R and looking at the graded pieces, one �nds that the k-th component
of Tor1(R,C) is isomorphic to the homology of the complex

H0(Lk−1)⊗
∧2

H0(L)→ H0(Lk)⊗H0(L)→ H0(Lk+1).

Finally, N1 is equivalent to the exactness of this sequence, which in turn follows from
the vanishing of H1(

∧2ML⊗Lk) for all k ≥ 2. If, in addition, H1(Lk) = 0 for all k, the
converse is also true.
As done in [Laz89] and [GL88], this proof can be generalized to property Np and yields
the following

11



Chapter 3 The kernel of the evaluation map

3.4 Theorem. Let L be a globally generated line bundle on a projective variety X. If

the cohomology group H1(X,
∧p′+1ML ⊗ Lk) vanishes for all 0 ≤ p′ ≤ p and all k ≥ 1,

then L satis�es the property Np. If, in addition, H1(Lt) = 0 for all t ≥ 1, then the above

condition is necessary and su�cient for L to satisfy property Np.

Since we are working over the complex numbers, it is su�cient to prove the vanishing of
H1(M⊗p+1

L ⊗ Lk) for all k ≥ 1 to get property Np.

Results for K3 surfaces

As we have seen, the normal generation of a line bundle can be checked by calculation
of the cohomology groups H1(ML⊗Lk) for all k. Let us now use this technique to show
appropriate results for line bundles on K3 surfaces. These strong vanishing theorems
were stated and proved by Gallego and Purnaprajna in [GP00].

3.5 Theorem. Let S be a K3 surface and let L be a globally generated line bundle on S
with (L.L) ≥ 4. Then the multiplication map

H0(Lr)⊗H0(Ls)→ H0(Lr+s)

is surjective for all r ≥ 2, s ≥ 1. Moreover, H1(MLr ⊗ Ls) = 0 for all r ≥ 2, s ≥ 1 and

all r ≥ 1, s ≥ 2.

Before we begin with the proof of the theorem, we make a few remarks.

3.6. Since a K3 surface is a nonsingular projective variety and L is globally generated,
we can apply Bertini's theorem to the base point free linear system |L|. Therefore almost
every C ∈ |L|, considered as a closed subscheme, is smooth (cf. [Har77, III.10.9]). In
particular, we get the existence of a smooth curve C ∈ |L| and can write L = O(C).

3.7. For three coherent sheaves E, F and G and their multiplication maps, we can give
a commutative diagram

H0(E)⊗H0(F )⊗H0(G) //

m1

��

H0(E ⊗ F )⊗H0(G)

m

��
H0(E ⊗G)⊗H0(F )

m2 // H0(E ⊗ F ⊗G).

From this diagram, it follows that surjectivity of m1 and m2 implies surjectivity of m.

3.8. Let X be a regular variety, Y a subvariety of codimension 1, L := O(Y ) a line
bundle on X and F a coherent sheaf such that H1(F ⊗ L∗) = 0. We consider Y as an
e�ective divisor and get the sequence:

0→ O(−Y )→ OX → OY → 0

12



We twist this sequence with O(Y ), take global sections and tensor the result with H0(F ).
We obtain a sequence where the terms give rise to a multiplication:

H0(F )⊗H0(OX)
� � //

����

H0(F )⊗H0(L) // //

α

��

H0(F )⊗H0(L⊗OY )

β

��
H0(F )

� � // H0(F ⊗ L) // // H0(F ⊗ L⊗OY )

The right map in the top row is surjective due to the regularity of X. If we furthermore
assume that the multiplication map on the curve is surjective, namely

H0(F ⊗OY )⊗H0(L⊗OY ) � H0(F ⊗ L⊗OY ),

the map β is also surjective. But if β is onto, the multiplication map α must be surjective
as well. Summing up: In the given situation, the multiplication map is surjective if it is
on the curve.

3.9. In the paper [But94] of Butler, a criterion is presented to check whether the multipli-
cation map on a curve is surjective. In our case of line bundles, the criterion can be formu-
lated in the following way: If L and L′ are line bundles on a curve of genus g such that L′ is
globally generated and the inequalities 2g < deg(L) and 4g−2h1(L′) < deg(L)+deg(L′)
hold, the multiplication map H0(L)⊗H0(L′)→ H0(L⊗ L′) is surjective.

Proof. (of Theorem 3.5) Together with these remarks we can prove the theorem. First
we can assume that L = O(C) for a smooth curve C (see 3.6). From the second remark
3.7, we see that it is enough to verify surjectivity of the maps

H0(Lr)⊗H0(L)→ H0(Lr+1)

for all r ≥ 2. By the third remark 3.8, it su�ces to prove surjectivity of

H0((L⊗OC)r)⊗H0(L⊗OC)→ H0((L⊗OC)r+1).

Note that for this reduction we have to use the Kawamata-Vieweg vanishing theorem:
We need the condition H1(Lr ⊗ L−1) = H1(Lr−1) = 0 for all r ≥ 2, which holds by
this theorem. Finally, we want to use Butler's criterion 3.9 and have to check the two
inequalities. But these are true as long as (L.L) ≥ 4.
To see the connection between the multiplication map and the kernel of the evaluation
map, we start with the short exact sequence (3.1) for G = Lr, tensor it with Ls and look
at the induced long exact sequence. This is the same as in the proof of Theorem 3.2:

· · · → H0(Ls)⊗H0(Lr)→ H0(Lr+s)→ H1(MLr ⊗ Ls)→ H0(Lr)⊗H1(Ls)︸ ︷︷ ︸
=0

→ · · · .

Since H1(MLr ⊗ Ls) is the cokernel of the multiplication map, it vanishes if and only if
the multiplication is surjective. q.e.d.
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Chapter 3 The kernel of the evaluation map

As a direct consequence, we obtain, together with Theorem 3.2, a result already known
by Saint-Donat in 1974. One can �nd it in [SD74, Theorem 6.1.(ii)]. But the assumptions
of Saint-Donat are slightly di�erent form ours.

3.10 Corollary. Let S be a K3 surface and L a globally generated line bundle on S with

(L.L) ≥ 4. Then Lr is normally generated for r ≥ 2.

Now we show the vanishing of the groups that imply the property Np.

3.11 Theorem. Let S be a K3 surface. Let L be a globally generated line bundle on S
such that (L.L) ≥ 4. Then

(i) H1(M⊗2
Lr ⊗ Ls) = 0 for all r, s ≥ 2.

(ii) H1(M⊗p+1
Lr ⊗ Ls) = 0 for all p ≥ 0, r ≥ 2, s ≥ p+ 1

In this proof we will use the concept of stability. Recall that the slope of a vector bundle,
denoted by µ, is its degree1 divided by its rank. A vector bundle E is called semistable
if the slope of every subbundle is smaller or equal to the slope of E . Note that a line
bundle is always semistable.

3.12. In his paper [But94], Butler also gives a criterion for the kernel of the evaluation
map to be semistable, Theorem 1.2: If E is a semistable vector bundle with µ(E ) ≥ 2g,
then ME is semistable, too. It also states, that µ(ME ) ≥ −2, which will be analyzed
in detail in the proof of the theorem. If we look at E = Lr, the tensor power of a line
bundle L of degree 2g, with g the genus of the curve, we see that it is semistable, since
all line bundles are semistable, and has slope µ(Lr) = deg(Lr) = 2rg ≥ 2g for all r ≥ 1.
Hence, MLr is semistable for all r ≥ 1.

In the proof we will deal with the bundle MLr ⊗ Ls ⊗OC , where C ∈ |L|. This bundle
has the disadvantage of not being semistable. But there is a way to go from this bundle
to a semistable one. A slightly stronger version of the following lemma and its proof can
be found in [GP99, Lemma 2.9].

3.13 Lemma. Let X be a projective variety, let q be a nonnegative integer and let F be

a globally generated line bundle on X. Let Q be an e�ective line bundle on X and C be a

reduced and irreducible member of |Q|. Let R be a line bundle and G a sheaf on X such

that:

(i) H1(F ⊗Q∗) = 0

(ii) H0(M⊗q
′

FC
⊗RC)⊗H0(G)→ H0(M⊗q

′

FC
⊗R⊗G⊗OC) is surjective for all 0 ≤ q′ ≤ q.

Then the following map is surjective for all 0 ≤ p ≤ q and all 0 ≤ k ≤ p:

H0(M⊗kF ⊗M⊗p−kFC
⊗RC)⊗H0(G)→ H0(M⊗kF ⊗M⊗p−kFC

⊗G⊗R⊗OC).

1The degree of a vector bundle E is de�ned as deg(E ) = deg(det(E )).
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Now we have gathered the tools to prove Theorem 3.11.

Proof. We �x some r, s ≥ 2 and start with sequence (3.1) again, but this time we tensor
it with MLr ⊗ Ls and take global sections. The part of the result we have to look at is
the following:

0 // H0(M⊗2
Lr ⊗ Ls) // H0(Lr)⊗H0(MLr ⊗ Ls) α // H0(MLr ⊗ Lr+s)

rrddddddddddddddddddddddddddddddddddd

H1(M⊗2
Lr ⊗ Ls) // H1(MLr ⊗ Ls) // · · · .

The last term is zero, due to the vanishing of H1(MLr ⊗ Ls), which was the statement
of Theorem 3.5. Now our aim is to show the surjectivity of the map α. As in the last
proof, we reduce via 3.7 to requiring surjectivity of

H0(L)⊗H0(MLr ⊗ Ls)→ H0(MLr ⊗ Ls+1)

for all r, s ≥ 2. The remark 3.8 allows us to show that the map

H0(L⊗OC)⊗H0(MLr ⊗ Ls ⊗OC)→ H0(MLr ⊗ Ls+1 ⊗OC)

is onto. The curve C in the system |L| is chosen via 3.6. As usual, we abbreviate L⊗OC
with LC . Thus, we can write H0(LC)⊗H0(MLr ⊗ LsC)→ H0(MLr ⊗ Ls+1

C ).
We now want to pass to a semistable bundle and continue working with it. To do so,
we will apply Lemma 3.13. We choose q = 1 and F = Lr, which is globally generated
� simply because L is. The e�ective line bundle Q is taken to be L = O(C), R = Ls

and G = LC . Now the lemma, for k = p = 1, implies the surjection we are interested
in. To establish the conditions of the lemma, it is su�cient to show that H1(F ⊗Q∗) =
H1(Lr−1) = 0 and

H0(M⊗pLr
C
⊗ LsC)⊗H0(LC)→ H0(M⊗pLr

C
⊗ Ls ⊗ LC ⊗OC) = H0(M⊗pLr

C
⊗ LsC)

is surjective for p = 0, 1. The vanishing of H1(Lr−1) for r ≥ 1 has already been seen and
used. The second condition actually consists of two conditions. The �rst one, for k = 0,
translates as surjectivity of the map H0(LsC) ⊗H0(LsC) → H0(Ls+1

C ), which was shown
in the last proof using Butler's criterion 3.9. In the case k = 1, we have to verify that
the map

H0(LC)⊗H0(MLr
C
⊗ LsC)→ H0(MLr

C
⊗ Ls+1

C )

is surjective for all r, s ≥ 2. The cokernel of this map is H1(MLr
C
⊗MLC

⊗ LsC). As
we have seen in remark 3.12, the bundle MLt

C
is semistable for all t ≥ 1. Now we

use the tensor product theorem, stating that tensor products of semistable bundles are
semistable, see for example [Miy85, Corollary 3.7], and deduce the semistability of the
bundle E := MLr

C
⊗MLC

⊗ LsC . We now estimate the slope of E, starting with MLr
C
.

Let g be the genus of the curve C. Note that, due to 4 ≤ (L.L) = 2g − 2, the genus
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is at least 3. We then have rk(MLr
C

) = h0(LrC) − 1 = deg(LrC) − g = 2rg − g and
deg(MLr

C
) = −deg(LrC) = −2rg for all r. The case r = 1, which is also a term in E,

must therefore have slope µ(MLC
) = −2. If r ≥ 2 we can estimate the slope via r > 1:

µ(MLr
C

) =
degMLr

C
)

rk(MLr
C

)
=
−2rg

2rg − g
>
−2g

2g − g
= −2.

Composing these we obtain:

µ(E) = µ(MLr
C
⊗MLC

⊗ LsC)

= µ(MLr
C

) + µ(MLC
) + µ(LsC) > −2− 2 + 2gs > 2g − 2 = µ(ωC),

where ωC denotes the canonical bundle on C. We can rewrite this as

µ(E∗ ⊗ ωC) = −µ(E) + µ(ωC) < (−2g + 2) + (2g − 2) = 0.

The vector bundle E is semistable, so is ωC , and hence, E∗ ⊗ ωC is also semistable. But
a semistable bundle with a negative slope has no global sections: H0(E∗ ⊗ ωC) = 0.
Finally, Serre Duality yields H0(E∗ ⊗ ωC) = H1(E)∗ and gives us the vanishing we
wanted.
The second part of the theorem is done essentially in the same way. The result was
already proven for p = 0 in Theorem 3.5 and for p = 1 in the �rst part of this proof �
we use this as the basis for an induction on p.
Thus, let us assume the statement holds for p. As in the �rst part, one starts with the
sequence (3.1) and twists it with M⊗pLr ⊗ Ls. By induction, the term H1(M⊗pLr ⊗ Ls)
vanishes for all r ≥ 2 and s ≥ p, therefore we have to show the surjectivity of the map
corresponding to α; recall the beginning of the proof of the �rst part. By the remark 3.7
and 3.8 the problem is reduced to the surjectivity of

H0(M⊗pLr ⊗ Ls ⊗OC)⊗H0(L⊗OC)→ H0(M⊗pLr ⊗ Ls+1 ⊗OC).

Now we use Lemma 3.13 again with the same input: The bundle G is chosen as LC ,
Q = L is still an e�ective line bundle with C as a general member, F = Lr is globally
generated and R = Ls. We have only changed the integer q from 1 to p. As seen before,
the lemma yields the right surjection if the conditions are satis�ed. Since we have only
changed the parameter q, the �rst condition is still satis�ed for the same reason. The
second one actually consists of more than two conditions, since p′ now ranges from 0 to
p. The cases p′ = 0 and p′ = 1 have already been discussed, so we assume p′ > 1. The
map whose surjection we are interested in is

H0(M⊗p
′

Lr
C
⊗ Lsc)⊗H0(LC)→ H0(M⊗p

′

Lr
C
⊗ Ls+1

C )

and has the cokernel H1(M⊗p
′

Lr
C
⊗ MLC

⊗ LsC). As we have seen before, the bundle

E = MLr
C
⊗MLC

⊗ LsC is semistable for all r, s. Hence, the bundle

Ep′ = E ⊗M⊗p
′−1

Lr
C

= M⊗p
′

Lr
C
⊗MLC

⊗ LsC
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is also semistable due to the tensor product theorem. Using the same arguments as
before, we can deduce the vanishing of H0(Ep′ ⊗ ωC) = H1(Ep′)

∗ from our estimate of
the slope. This yields the desired surjectivity. q.e.d.

As a direct consequence of 3.11 together with Theorems 3.2 and 3.4 we obtain:

3.14 Corollary. Let S be a K3 surface and L a globally generated line bundle on S with

(L.L) ≥ 4. Then Lr is normally generated for r ≥ 2. Moreover, if s ≥ p + 1, then Ls

satis�es Np.

These results state the vanishing of the �rst cohomology groups. Later on, when we
study the property Np on the product, Theorem 3.4 will be applied. The kernel of the
evalution map involved will be expressed as a sum of certain vector bundles. To deal with
the cohomology of such an object, we proved Lemma 2.2. For this lemma, we require
the vanishing of higher cohomology groups, which is precisely covered by the following

3.15 Lemma. Let µ ∈ N, X be a projective variety and L a globally generated line

bundle such that H i(Lt) = 0 for all i ≥ 1 and all t ≥ µ. Then,
(i) H i(MLr ⊗ Ls) = 0 for all i ≥ 2, r ≥ 1 and s ≥ µ
(ii) H i(M⊗p+1

Lr ⊗ Ls) = 0 for all p ≥ 0, i ≥ 3, r ≥ 1 and s ≥ µ

(iii) If in addition H1(M⊗p
′+1

Lr ⊗ Ls) vanishes for all 0 ≤ p′ ≤ p, r ≥ 1 and s ≥ µ, then
H2(M⊗p

′+1
Lr ⊗ Ls) = 0 for all 0 ≤ p′ ≤ p, r ≥ 1 and s ≥ µ. Here it su�ces to ask

for the vanishing of H1(Lt) and H2(Lt) for all t ≥ µ.

Proof. The vanishing of H i(MLr ⊗Ls) for i ≥ 2 can be deduced from the sequence (3.1)
for G = Lr by tensoring it with Ls and taking global sections:

· · · → H i−1(Lr+s)︸ ︷︷ ︸
=0 ∀r+s≥µ

→ H i(MLr ⊗ Ls)→ H0(Lr)⊗H i(Ls)︸ ︷︷ ︸
=0 ∀s≥µ

→ · · ·

So H i(MLr ⊗ Ls) also vanishes for all i ≥ 2, r ≥ 2 and s ≥ µ.
For the second part, we induct on p. The case p = 0 is the �rst statement, so we assume
the vanishing for p. Again, we start with sequence (3.1). This time we tensor with
M⊗pLr ⊗ Ls and take global sections. We obtain

· · · → H i−1(M⊗pLr ⊗ Lr+s)︸ ︷︷ ︸
=0 ∀r≥1,r+s≥µ

→ H i(M⊗p+1
Lr ⊗ Ls)→ H0(Lr)⊗H i(M⊗pLr ⊗ Ls)︸ ︷︷ ︸

=0 ∀r≥1,s≥µ

→ · · ·

Clearly, the middle term of this sequence vanishes for i ≥ 3,r ≥ 1 and s ≥ µ.
For the last part, we again induct on p and look at the beginning of the same long exact
sequence:

· · · → H1(M⊗pLr ⊗ Lr+s)︸ ︷︷ ︸
=0 ∀r≥1,r+s≥µ
by assumtion

→ H2(M⊗p+1
Lr ⊗ Ls)→ H0(Lr)⊗H2(M⊗pLr ⊗ Ls)︸ ︷︷ ︸

=0 ∀r≥1,s≥µ
by induction

→ · · ·

q.e.d.
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Let L be a globally generated line bundle on a K3 surface such that (L.L) ≥ 4. Then we
have:

H i(M⊗p+1
Lr ⊗ Ls) = 0 ∀p ≥ 0, i ≥ 1, r ≥ 2, s ≥ p+ 1 (3.16)

By the Kawamata-Viehweg vanishing theorem, one has H i(Lt) = 0 for all i ≥ 1 and for
all t ≥ 1 = µ. So we can apply the second part of Lemma 3.15 and get the vanishing
for all i ≥ 3, p ≥ 0 and r, s ≥ 1. By Theorems 3.5 and 3.11 we obtain the vanishing for
i = 1, p = 0, r ≥ 1 and s ≥ p + 1. Now, we can apply the third part of the previous
lemma and conclude the remaining vanishing statements for i = 2.

q.e.d.
As mentioned in the beginning, we will show the normal generation of special line bundles
on the symmetric product and the Hilbert scheme of a K3 surface. Of course, we will
use Theorem 3.2 and show the vanishing of the cohomology groups in question. The
situation can be roughly described as follows: We have a line bundle K on the 2-nd
symmetric power and L the corresponding line bundle on the 2-fold tensor power. The
vanishing of H1(MLr ⊗ Ls) is known for some r and s and we have to relate it to the
vanishing of H1(MKr ⊗Ks), where the following lemma leads us to.

3.17 Lemma. Let S be a K3 surface and L a line bundle on S such that (L.L) ≥ 4.
We obtain a line bundle J := L�L on the product S × S. Since this bundle is invariant

under the operation of S2, it descends to a bundle K on the symmetric product S2(S)
and therefore, it has the property p∗K = J . As in the diagram (2.7) p : S2 → S2(S) is

the quotient map.

Now the following holds: H1(p∗MKr ⊗ Js) = 0 for all r, s ≥ 2.

Proof. We start with the usual sequence (3.1), pull it back via p∗ and take global sections.
As a result, we get

0 // H0(p∗MKr ⊗ Js) // // p∗H0(Kr)⊗H0(Js) // H0(Jr+s)

rreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

H1(p∗MKr ⊗ Js) // p∗H0(Kr)⊗H1(Js) = 0 // · · ·

(3.18)

Since the pullback of K is the S2-invariant line bundle J , we see that p
∗H0(Kr) is the

part ofH0(Jr) = H0((L�L)r) = H0(Lr)⊗H0(Lr) which is invariant under the operation
of the symmetric group S2, which exchanges the components. Hence, it is isomorphic
to S2(H0(Lr)). Looking at the sequence (3.18) and �lling in these isomorphisms, we see
that our task is to show the surjectivity of the map

ms : S2(H0(Lr))⊗H0(Ls)⊗2 → H0(Lr+s)⊗H0(Lr+s),

where we multiply the �rst and third as well as the second and fourth components,
respectively. This multiplication m : H0(Lr)⊗H0(Ls)→ H0(Lr+s) is surjective due to
Theorem 3.5. Since the tensor product is commutative, we see that m(x⊗y) = m(y⊗x)
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for all x ∈ H0(Lr) and y ∈ H0(Ls). For ease of notation, we will abbreviate m(x ⊗ y)
by xy.
Next, we show that the map ms is onto by lifting a ⊗ b ∈ H0(Lr+s)⊗2 as an arbitrary
generator. Since m is surjective, we can pick preimages of a and b. Furthermore, there
are two cases: r ≥ s and s ≥ r. Since we will use this lemma to prove property Np,
we restrict ourself to the case s ≥ r and write s = r + t. For sake of simplicity we
assume that a and b lift to pure tensors. Thus, we obtain a = m(xa ⊗ ya) = xaya and
b = m(xb⊗yb) = xbyb for some xa, xb ∈ H0(Lr) and some ya, yb ∈ H0(Ls). We now have
another multiplication map H0(Lr)⊗H0(Lt)→ H0(Ls) allowing us to lift the elements
ya and yb. We write ya = yray

t
a and yb = yrby

t
b using this multiplication map. We claim

that the following element is a preimage of a⊗ b:

(xa ⊗ xb + xb ⊗ xa)⊗ ya ⊗ yb +
1

2
(xa ⊗ yrb + yrb ⊗ xa)⊗ xbyta ⊗ yraytb

−1

2
(xa ⊗ yra + yra ⊗ xa)⊗ xbyta ⊗ yb −

1

2
(yrb ⊗ yra + yra ⊗ yrb )⊗ xbyta ⊗ xaytb

.
By calculation, we will establish that this element actually is mapped to a ⊗ b, using
xy = m(x⊗ y) = m(y ⊗ x) for suitable x and y.

ms

(
(xa ⊗ xb + xb ⊗ xa)⊗ ya ⊗ yb +

1

2
(xa ⊗ yrb + yrb ⊗ xa)⊗ xbyta ⊗ yraytb

− 1

2
(xa ⊗ yra + yra ⊗ xa)⊗ xbyta ⊗ yb −

1

2
(yrb ⊗ yra + yra ⊗ yrb )⊗ xbyta ⊗ xaytb

)
=xaya ⊗ xbyb +xbya ⊗ xayb︸ ︷︷ ︸i1

+
1

2
xaxby

t
a ⊗ yrbyraytb︸ ︷︷ ︸i2

+
1

2
yrbxby

t
a ⊗ xayraytb︸ ︷︷ ︸i3

−1

2
xaxby

t
a ⊗ yrayb︸ ︷︷ ︸i2

−1

2
yraxby

t
a ⊗ xayb︸ ︷︷ ︸i1

−1

2
yrbxby

t
a ⊗ yraxaytb︸ ︷︷ ︸i3

−1

2
yraxby

t
b ⊗ yrbxaytb︸ ︷︷ ︸i1

=xaya ⊗ xbyb = a⊗ b.

The terms with the same number cancel each other, when using ytay
s
a = ya and y

t
by
s
b = yb.
q.e.d.

We get a similar lemma for the Hilbert scheme.

3.19 Lemma. Let S be a K3 surface and L a line bundle on S, generated by global

sections with (L.L) ≥ 4. Then we pull back the bundle L � L to the blowup along the

diagonal and denote this bundle with L. This bundle descends to a bundle J on the Hilbert

scheme Hilb2(S) and therefore has the property p̃∗J = L. The map p̃ : S̃ × S → Hilb2(S)
is the quotient by the S2-operation (cf. (2.7)). The bundles satisfy H1(p̃∗MJ r ⊗Ls) = 0
for all r, s ≥ 2.
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Chapter 3 The kernel of the evaluation map

Proof. We reduce the statement to the previous lemma by �lifting it along a blowup�. If
we look at diagram (2.7) we have proven the statement for the right map p and want to
show it for the left map p̃. We will use the notation of this diagram.

0 = H1(p∗MKr ⊗ Js)
= H1(p∗MKr ⊗ p∗Ks ⊗ ϕ∗OS2(S)) Theorem 2.4

= H1(ϕ∗(ϕ
∗(p∗(MKr ⊗Ks)))⊗OS2(S)) Leray spectral sequence

= H1((p ◦ ϕ)∗(MKr ⊗Ks))

= H1((ϕ̄ ◦ p̃)∗(MKr ⊗Ks))

= H1(p̃∗Mϕ̄∗Kr ⊗ ϕ̄∗Ks) Theorem 2.4

= H1(p̃∗MJ r ⊗ Ls).

q.e.d.

Properties of MG

As we have seen, the normal generation of a line bundle can be checked by calculating
the cohomology group H1(ML ⊗ Lk) for all k. Hence, we need some more techniques to
handle ML. The following theorem plays a crucial role in this thesis. It allows us to lift
property Np to the product of varieties. More precisely, if we have two varieties with a
line bundle on each of them, it provides a formula for ML�L′ on the product.

3.20 Theorem. Let X and X ′ be two projective varieties, L a globally generated line

bundle on X and L′ a globally generated line bundle on X ′. Then for the line bundle

J := π∗1L⊗ π∗2L′ on Y = X ×X ′, the following formula holds:

MJ = π∗1ML ⊗ π∗2(D′) + π∗1(D)⊗ π∗2ML′ ⊆ π∗1D ⊗ π∗2D′

with D = H0(L)⊗OX and D′ = H0(L′)⊗OX′ .

Proof. Since MJ is the kernel of the map (3.1), we start by analyzing H0(J)⊗OY . We
denote by ρY (resp. ρX) the map from Y (resp. X) to the point Spec(C). Furthermore,
we know that H0(J)⊗OY = ρ∗Y ρY,∗J and the evaluation map is the counit.
So we want to calculate ρ∗Y ρY,∗J , starting with

ρY,∗J = ρY,∗(π
∗
1L⊗ π∗2L′) = H0(X ×X ′, π∗1L⊗ π∗2L′) = H0(X,L)⊗H0(X ′, L′)

In the next step we compute ρ∗Y ρY,∗J :

ρ∗Y ρY,∗J = ρ∗Y (H0(L)⊗H0(L′))

= ρ∗YH
0(L)⊗ ρ∗YH0(L′)

= π∗1(ρ∗XH
0(L))⊗ π∗2(ρ∗X′H

0(L′))

= π∗1(H0(L)⊗OX)⊗ π∗2(H0(L′)⊗O′X)

= π∗1(D)⊗ π∗2(D′).
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Finally, with the help of remark (2.3), this gives the equation for MJ :

MJ = ker(ρ∗Y ρY,∗J → J)

= ker(π∗1(D)⊗ π∗2(D′)→ π∗1L⊗ π∗2L′)
= ker(π∗1(eL)⊗ π∗2(eL′))

= ker(π∗1(eL))⊗ π∗2(D′) + π∗1(D)⊗ ker(π∗2(eL′))

= π∗1(ML)⊗ π∗2(D′) + π∗1(D)⊗ π∗2(M ′L) ⊆ π∗1(D)⊗ π∗2(D′).

q.e.d.

3.21 Theorem. Let L be a globally generated line bundle on a projective variety X and

ϕ : X̃ → X a blowup along some subvariety. Then ϕ∗ML = Mϕ∗L.

Proof. We use the notation and the idea of the previous proof and start by analyze
H0(ϕ∗L)⊗O

X̃
. The projection formula gives us:

ρ∗
X̃
ρ
X̃,∗ϕ

∗(L) = ϕ∗ρ∗XρX,∗ϕ∗(ϕ
∗L⊗O

X̃
) = ϕ∗ρ∗XρX,∗(L⊗ ϕ∗OX̃) = ϕ∗(H0(L)⊗OX).

In the last equality we use Theorem 2.4: ϕ∗OX̃ = OX .
Since ϕ∗(ML) is the kernel of the natural map ϕ∗(H0(L) ⊗ OX) → ϕ∗L, this implies
ϕ∗ML = Mϕ∗L.

q.e.d.
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Chapter 4

Normal generation of line bundles

In this chapter we will prove the main theorems of this thesis: In the �rst section we show
that a line bundle (L�L)r on the self-product of a K3 surface is normally generated for
every r ≥ 2 and has property Np for all r ≥ p+ 1. This will be achieved by calculating
the cohomology group H1(M(L�L)r ⊗ (L� L)s). For this purpose, we have developed a
formula to express M(L�L)r in terms of MLr in the last chapter.
In the second section we show that normal generation and property Np are compatible
with blowups: If a line bundle has one of these properties, the bundle obtained by
pullback also does.
Finally, we look at bundles on the Hilbert scheme and the symmetric power. If we have a
bundle on the product (or its blowup) which is normally generated, the bundle obtained
by descent is also normally generated.

Line bundles on S × S

4.1 Theorem. Let X and X ′ be projective varieties. Let L be a globally generated line

bundle on X such that

• H1(MLr ⊗ Ls) = 0 for all r ≥ 1, s ≥ µ (for some µ ∈ N)
• H i(Lt) = 0 for all i ≥ 1, t ≥ µ

Let L′ a globally generated line bundle on X ′ with the same properties.

Consider the line bundle J = L� L′ on X ×X ′. Then

H1(MJr ⊗ Js) = 0 ∀r ≥ 1, s ≥ µ

Proof. First we use Theorem 3.20 to express MJ in terms of ML and ML′ :

MJr ⊗ Js = π∗1MLr ⊗ π∗2(H0(L′r)⊗OX′)⊗ π∗1Ls ⊗ π∗2L′s

+ π∗1(H0(Lr)⊗OX)⊗ π∗2ML′r ⊗ π∗1Ls ⊗ π∗2L′s

= π∗1(MLr ⊗ Ls)⊗ π∗2(H0(L′r)⊗ L′s)︸ ︷︷ ︸
=:N1

+π∗1(H0(Lr)⊗ Ls)⊗ π∗2(ML′r ⊗ L′s)︸ ︷︷ ︸
=:N2

= N1 +N2
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Chapter 4 Normal generation of line bundles

Lemma 2.2 tells us that we can check the vanishing of H1(MJr ⊗Js) = H1(N1 +N2) for
all r ≥ 1 and s ≥ µ by checking the vanishing of H1(N1), H1(N2) and H2(N1 ∩N2).

(i) H1(N1) = 0:
With the help of the Künneth formula and the assumptions, we obtain:

H1(N1) = H1
(
π∗1(MLr ⊗ Ls)⊗ π∗2(H0(L′r)⊗ L′s)

)
=
(
H1(MLr ⊗ Ls)︸ ︷︷ ︸

=0

⊗H0(L′r)⊗H0(L′s)
)

⊕
(
H0(MLr ⊗ Ls)⊗H0(L′r)⊗H1(L′s)︸ ︷︷ ︸

=0

)
= 0.

(ii) H1(N2) = 0:
This can be done analogously to the �rst part.

(iii) H2(N1 ∩N2) = 0
Since H i(Lt) = 0 for all i ≥ 1, t ≥ µ, we can apply the �rst part of Lemma 3.15
and obtain H2(MLr ⊗Ls) = 0 for all r ≥ 1, s ≥ µ. The same is, of course, true for
L′. So the Künneth formula yields:

H2(N1 ∩N2) = H2(π∗1(MLr ⊗ Ls)⊗ π∗2(ML′r ⊗ L′s))
= H0(MLr ⊗ Ls)⊗H2(ML′r ⊗ L′s)︸ ︷︷ ︸

=0

⊕H1(MLr ⊗ Ls)︸ ︷︷ ︸
=0

⊗H1(ML′r ⊗ L′s)︸ ︷︷ ︸
=0

⊕H2(MLr ⊗ Ls)︸ ︷︷ ︸
=0

⊗H0(ML′r ⊗ L′s)

= 0.

q.e.d.

4.2. There exists another proof of this theorem which is more concrete. But the above
proof has the advantage, that it can be seen as a special case of Theorem 4.4.
Starting with the sequence (3.1) for G = Jr, twist it with Js and take global sections to
obtain

· · · → H0(Jr)⊗H0(Js)→ H0(Jr+s)
α→ H1(MJr ⊗ Js)→ H0(Jr)⊗H1(Js)︸ ︷︷ ︸

=0

→ · · · .

The last term is zero due to

H1(Jr) = H1((L� L′)r) = H0(Lr)⊗H1(L′r)︸ ︷︷ ︸
=0

⊕H1(Lr)︸ ︷︷ ︸
=0

⊗H0(L′r) = 0
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for all r. We conclude that H1(MJr⊗Js) = 0 is equivalent to the surjectivity of α. Using
the Künneth formula, α can be written as a tensor product of two other multiplications:

H0(Jr)⊗H0(Js)
α // H0(Jr+s)

H0(Lr)⊗H0(L′r)⊗H0(Ls)⊗H0(L′s) // H0(Lr+s)⊗H0(L′r+s).

The bottom map is surjective due to Theorem 3.5. Hence, α is also surjective for all
r ≥ 1 and s ≥ µ.

As a corollary, we recover the analogue to Theorem 3.5 for the self-product of a K3
surfaces.

4.3 Corollary. Let S be a K3 surface and L a line bundle on S with (L.L) ≥ 4, generated
by its global sections. Let J be the line bundle L � L on S × S. Then Jr is normally

generated for all r ≥ 2.

Proof. By Theorem 3.2 it su�ces to prove H1(MJr ⊗ Js) = 0 for all r, s ≥ 2 to get the
normal generation.
For this vanishing we want to use the above Theorem 4.1. In order to apply it with
X = X ′ = S, µ = 2 and L = L′, we have to verify two conditions:

• H1(MLr ⊗ Ls) = 0 ∀r ≥ 1, s ≥ 2
This is true by Theorem 3.5, since S is a K3 surface.

• H i(Lt) = 0 ∀i ≥ 1t ≥ 2
This is true by the Kawamata-Viehweg vanishing theorem.

Thus, we can apply Theorem 4.1 and deduce the vanishing required for Theorem 3.2.
q.e.d.

We get the results required for property Np.

4.4 Theorem. Let S be a K3 surface and L a globally generated line bundle, such that

(L.L) ≥ 4. Again, we de�ne X := S × S and J := π∗1L⊗ π∗2L. Then,

H1(M⊗p+1
Jr ⊗ Js) = 0 for all r ≥ 2, s ≥ p+ 1.

Proof. In order to calculate this cohomology group we introduce some notation:
Ξ = {I1 ⊗ . . . ⊗ Ip+1 ⊆ (H0(Lr) ⊗OS)⊗p+1|∀i : Ii ∈ {MLr , H0(Lr) ⊗OS}} and for any

I = I1 ⊗ · · · ⊗ Ip+1 ∈ Ξ the �dual� Î = Î1 ⊗ . . .⊗ Îp+1 ∈ Ξ via:

Îi =

{
MLr if Ii = H0(Lr)⊗OS
H0(Lr)⊗OS if Ii = MLr
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Chapter 4 Normal generation of line bundles

With this terminology we start calculating the cohomology group:

H1(M⊗p+1
Jr ⊗ Js)

= H1
(

[π∗1MLr ⊗ π∗2(H0(Lr)⊗OS) + π∗1(H0(Lr)⊗OS)⊗ π∗2MLr ]⊗p+1

⊗ π∗1Ls ⊗ π∗2Ls
)

= H1
(∑
I∈Ξ

(π∗1I ⊗ π∗2 Î)⊗ π∗1Ls ⊗ π∗2Ls
)

= H1
(∑
I∈Ξ

π∗1(I ⊗ Ls)⊗ π∗2(Î ⊗ Ls)
)

We want to use Lemma 2.2 to make sure that this group vanishes. Thus, we have to
show the vanishing of the cohomology groups H |Λ|(

⋂
I∈Λ π

∗
1(I ⊗ Ls) ⊗ π∗2(Î ⊗ Ls)) for

all non-empty Λ ⊆ Ξ. Since MLr ⊆ H0(Lr) ⊗ OS , we obtain for the intersection that⋂
I∈Λ π

∗
1(I ⊗ Ls) ⊗ π∗2(Î ⊗ Ls) = π∗1(A1 ⊗ . . . ⊗ Ap+1 ⊗ Ls) ⊗ π∗2(B1 ⊗ . . . ⊗ Bp+1 ⊗ Ls)

with

Ai =

{
MLr if ∃I1 ⊗ . . .⊗ Ip+1 ∈ Λ : Ii = MLr

H0(Lr)⊗OS if ∀I1 ⊗ . . .⊗ Ip+1 ∈ Λ : Ii = H0(Lr)⊗OS

Bi =

{
MLr if ∃I1 ⊗ . . .⊗ Ip+1 ∈ Λ : Ii = H0(Lr)⊗OS
H0(Lr)⊗OS if ∀I1 ⊗ . . .⊗ Ip+1 ∈ Λ : Ii = MLr .

By the Künneth formula:

H |Λ|(π∗1(A⊗ Ls)⊗ π∗2(B ⊗ Ls)) =
⊕

a+b=|Λ|

Ha(A⊗ Ls)⊗Hb(B ⊗ Ls) (4.5)

where A = A1 ⊗ . . .⊗Ap+1 and B = B1 ⊗ . . .⊗Bp+1.
As we do not want to intersect them, we are allowed to permute the factors. This gives A
(resp. B) a well-arranged form: A = M⊗µLr ⊗H0(Lr)⊗ν for some µ, ν ≥ 0 with µ+ν = p+1

(resp. B = M⊗µ
′

Lr ⊗H0(Lr)⊗ν
′
)

Hence, the cohomology group we are interested in can be written as

Ha(A⊗ Ls) = Ha(M⊗µLr ⊗H0(Lr)⊗ν ⊗ Ls) = H0(Lr)⊗ν ⊗Ha(M⊗µLr ⊗ Ls).

We distinguish three di�erent cases:

(i) µ, ν ≥ 1:

a) a ≥ 1:
This is the general case: Ha(M⊗µLr ⊗ Ls) with a, µ ≥ 1, r ≥ 2 and s ≥ p+ 1 is
vanishing because of remark (3.16).
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b) a = 0:
In this case we get b = |Λ| ≥ 1 and look at the other factor in (4.5): Hb(B⊗Ls).
Since ν ≥ 1 we know that there exits an j ∈ {1, . . . , p + 1} such that for all
I1 ⊗ . . . ⊗ Ip+1 ∈ Λ we have Ij = H0(Lr) ⊗ OS . Hence, B can be written

as M⊗µ
′

Lr ⊗ H0(Lr)⊗ν
′
with µ′ ≥ 1. Thus we have again the general case:

Hb(B⊗Ls) = Hb(M⊗µ
′

Lr ⊗Ls)⊗H0(Lr)⊗ν
′
with b, µ′ ≥ 1, r ≥ 2 and s ≥ p+ 1

(ii) µ = 0:
We look at the de�nition of µ: The vanishing of µ means that for every j =
1, . . . , p+ 1 and for every I1⊗ . . .⊗ Ip+1 ∈ Λ: Ij = H0(Lr⊗OS). Hence, Λ consists
of only one element, namely (H0(Lr)⊗OS)⊗p+1. Consider the intersection:

H |Λ|(
⋂
I∈Λ

π∗1(I ⊗ Ls)⊗ π∗2(Î ⊗ Ls))

=H1
(
π∗1
(
(H0(Lr)⊗OS)⊗p+1 ⊗ Ls

)
⊗ π∗2

(
M⊗p+1
Lr ⊗ Ls

))
=
(
H0(Lr)⊗p+1 ⊗H1(Ls)︸ ︷︷ ︸

=0

)
⊗H0(M⊗p+1

Lr ⊗ Ls)

⊕
(
H0(Lr)⊗p+1 ⊗H0(Ls)

)
⊗H1(M⊗p+1

Lr ⊗ Ls)︸ ︷︷ ︸
=0

=0

(iii) ν = 0:
In this case we get µ = p + 1 and obtain A = M⊗p+1

Lr . This means that for all
j = 1 . . . p + 1, there exits a I1 ⊗ . . . ⊗ Ip+1 with Ij = MLr . Again we distinguish
two cases:

a) The set Λ consists of only one element: Λ = {M⊗p+1
Lr }.

Here we can do a calculation similar to the previous case.

b) If we have more than one element in Λ, there exists an element such that there
is a k ∈ {1, . . . , p+ 1} with Ik = H0(Lr)⊗OS . Therefore, we get Bk = MLr

and µ′ ≥ 1. Together with equation (4.5) and remark (3.16), we obtain the
�nal vanishing.

q.e.d.

4.6 Corollary. Let S be a K3 surface and L a globally generated line bundle on S such

that (L.L) ≥ 4. Then, the bundle (L� L)r has property Np for r ≥ p+ 1.

Proof. By Theorem 3.4, we have to verify H1(M⊗p+1
Jr ⊗ Js) = 0 for all r, s ≥ p+ 1. This

is true due to the above theorem. q.e.d.
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Chapter 4 Normal generation of line bundles

Line bundles on the blowup S̃ × S

In this section we lift Theorem 4.4 to a blowup.

4.7 Theorem. Let X be a projective variety and ϕ : X̃ → X the blowup along some

subvariety, J a globally generated line bundle on X with H1(M⊗p+1
Jr ⊗ Js) = 0 for all

r ≥ 2, s ≥ p+ 1 and some p ≥ 0. Then for L := ϕ∗J :

H1(M⊗p+1
Lr ⊗ Ls) = 0 ∀r ≥ 2, s ≥ p+ 1

Proof. From Theorem 2.4 we know that the higher direct images of the structure sheaf
of the blowup vanish: Riϕ∗(OX̃) = 0 for all i ≥ 1. This holds for ϕ∗(M⊗p+1

Lr ⊗ Ls), too:

Riϕ∗
(
ϕ∗(M⊗p+1

Lr ⊗ Ls)
)

= Riϕ∗
(
ϕ∗(M⊗p+1

Lr ⊗ Ls)⊗O
X̃

)
=
(
M⊗p+1
Lr ⊗ Ls

)
⊗Riϕ∗OX̃ projection formula

= 0. ∀i ≥ 1

Using the Leray spectral sequence, we get

H1(X,ϕ∗
(
ϕ∗(M⊗p+1

Lr ⊗ Ls)
)
) = H1(X̃, ϕ∗(M⊗p+1

Lr ⊗ Ls)). (4.8)

Thus, for all r ≥ 2, s ≥ p+ 1:

0 = H1(M⊗p+1
Jr ⊗ Js) by assumption

= H1(M⊗p+1
Jr ⊗ Js ⊗ ϕ∗OX̃) Theorem 2.4: OX = ϕ∗OX̃

= H1(ϕ∗(ϕ
∗(M⊗p+1

Jr ⊗ Js)⊗O
X̃

)) projection formula

= H1(ϕ∗(M⊗p+1
Jr ⊗ Js)) see formula ((4.8) )

= H1(M⊗p+1
ϕ∗Jr ⊗ ϕ∗Js) Corollary 3.21

= H1(M⊗p+1
Lr ⊗ Ls).

q.e.d.

According to the diagram (2.7) we want to blow up the variety S×S along the diagonal:

ϕ : S̃ × S → S × S.

4.9 Corollary. Let S be a K3 surface and L an ample line bundle on S, generated by

global sections with (L.L) ≥ 4. As before, we de�ne J := L� L on S × S and L = ϕ∗J

on S̃ × S. Then, Lr is a normally generated line bundle for all r ≥ 2 and Ls satis�es Np

for s ≥ p+ 1.

Proof. To prove the normal generation we use Theorem 3.2 and have to show the van-
ishing of H1(MLr ⊗ Ls) for all r, s ≥ 2. We want to apply Theorem 4.7 and need the
vanishing of H1(MJr ⊗ Js), which was done in the proof of Corollary 4.3.
To prove property Np we use Theorem 3.4. In order to do so, we �rstly need to establish
two conditions:
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• H1(Lt) = 0 ∀t ≥ 1:
The line bundle J t has vanishing �rst cohomology because the Künneth formula
implies H1(J t) = H1(Lt) ⊗ H0(Lt) ⊕ H0(Lt) ⊗ H1(Lt). The remaining part is
similar to the previous proof: L has vanishing higher direct images, so we can
again apply the Leray spectral sequence and perform the same calculations with J
instead of M⊗p+1

Lr ⊗ Ls.

• H1(M⊗p+1
Lr ⊗ Ls) = 0 ∀r, s ≥ p+ 1:

Since we are in the situation of Theorem 4.4, we maintain H1(M⊗p+1
Jr ⊗ Js) = 0,

to which we can apply the above theorem to obtain the required vanishing. Now,
Theorem 3.4 gives us property Np.

q.e.d.

If one is only interested in the normal generation of Lr, there is a more concrete proof.
Using the sequence (3.1) in the usual fashion, we obtain that H1(MLr ⊗Ls) is the kernel
of the multipication map H0(Lr) ⊗H0(Ls) → H0(Lr+s) for all r, s. Together with 2.4
and the Leray spectral sequence, we see

H0(Lt) = H0(ϕ∗J t) = H0(ϕ∗ϕ
∗J t) = H0(J t ⊗ ϕ∗OS̃×S) = H0(J t) ∀t.

Now, we can write the multiplication map in the following way:

H0(Lr)⊗H0(Ls) // H0(Lr+s)

H0(Jr)⊗H0(Js) // H0(Jr+s).

The bottom map is surjective due to the last section (see 4.2). Thus, the top one is.

Line bundles on the Hilbert scheme Hilb
2(S) and the

symmetric power S2(S)

4.10 Theorem. Let X and Y be two projective varieties, f : X → Y a morphism and

K a globally generated line bundle on Y with the following properties for �xed r, s ≥ 1:

(i) The structure sheaf of Y is a direct summand of the direct image of the structure

sheaf of X under f .

(ii) The higher direct images (Rif∗)f
∗(MJ r ⊗ J s) vanish for all i ≥ 1.

(iii) The line bundle J := f∗K satis�es H1(MKr ⊗Ks) = 0.

Then, H1(MKr ⊗Ks) = 0
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Chapter 4 Normal generation of line bundles

Proof. We deploy the �rst assumption and write f∗OX = OY ⊕I for some I. The second
assumption implies H1(f∗(MKr ⊗Ks)) = H1(f∗(f

∗(MKr ⊗Ks))) by the Leray spectral
sequence. Consequently,

0 = H1(f∗MKr ⊗ Js)
= H1(f∗(f

∗(MKr ⊗Ks)))

= H1(MKr ⊗Ks ⊗ f∗OX) projection formula (cf. proof of Theorem 4.7)

= H1(MKr ⊗Ks ⊗ (OY ⊕ I)

= H1(MKr ⊗Ks)⊕H1(MKr ⊗Ks ⊗ I).

From this, we deduce that the group H1(MKr ⊗ Ks) appears as a direct summand of
zero. Hence, it must be zero itself. q.e.d.

As in the last sections, we use this theorem to show the normal generation of special line
bundles on the symmetric product. This is the statement of the

4.11 Corollary. Let S be a K3 surface and L an ample line bundle on it, generated by

global sections with (L.L) ≥ 4. The bundle L � L descends to a bundle K on the 2nd

symmetric power S2(S). The bundle Kr is normally generated for r ≥ 2.

Proof. We want to use Theorem 3.2 again and show H1(MKr ⊗Ks) = 0 for all r, s ≥ 2.
Theorem 4.10 gives us this vanishing, but we have to check several conditions:

(i) This hypothesis is satis�ed as mentioned in (2.8).

(ii) The vanishing of the higher direct images can also be deduced from (2.8) using the
projection formula as done several times before.

(iii) We are in the same situation as in Lemma 3.17, which yields exactly the desired
vanishing.

q.e.d.

4.12 Corollary. Let S be a K3 surface and L an line bundle on it, generated by global

sections with (L.L) ≥ 4. Let L be the pullback of the line bundle L � L to the blowup

along the diagonal. This bundle descends to a bundle J on the Hilbert scheme Hilb2(S).
The bundle J r is normally generated for r ≥ 2.

Proof. This proof is almost identical to the one above: show H1(MJ r ⊗ J s) = 0 for
all r, s ≥ 2 and use Theorem 3.2. For this vanishing we use Theorem 4.10. The �rst
two conditions are true for the same reason (except one uses (2.9)) and the third one is
satis�ed due to Lemma 3.19. q.e.d.
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Perspectives

Now, we have proven the theorems mentioned in the introduction. Given a line bundle
L on a K3 surface, we have proven that Lr is normally generated for r ≥ 2 and satis�es
property Np if r ≥ p+ 1. The same we have proven to be true for the bundle L� L on
the self-product of a K3 surface as well as the pullback of this bundle on the blowup.
However, looking at the Hilbert scheme or the symmetric product we have only shown
that the bundle obtained by descent has a normally generated square. The next question
is, of course, whether this bundle, or its tensor powers, satis�es property Np. Therefor,
it would be necessary to show the surjectivity of the map

H0(M⊗p+1
Kr ⊗Ks)⊗H0(K)→ H0(M⊗p+1

Kr ⊗Ks+1)

for r ≥ 2 and s ≥ p+ 1. Now, there are two natural generalizations.
Firstly, one could ask for these theorems to be true on the n-th self-product of a K3
surface, the Hilbert scheme of n points on a K3 surface, etc. Since the kernel of the
evaluation map acts well, we hope to be able to generalize these theorems to objects of
this kind.
The second question(,) that one has in mind, is more interesting: What about arbitrary
line bundles on these varieties? Do we need to go to higher tensor powers or is it enough
to go to the square, if one wants the normal generation? Gallego and Purnaprajna stated
a meta-principal:
If L is the product of (p + 1) ample and base-point-free line bundles satisfying �certain�

cohomological and numerical conditions, then L satis�es the condition Np.

Believing in this, as this thesis suggests, the p+ 1-th power of a line bundle should have
property Np, as long as the bundle is �nice�.
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